65 research outputs found

    Food-web structure in relation to environmental gradients and predator-prey ratios in tank-bromeliad ecosystems

    Get PDF
    Little is known of how linkage patterns between species change along environmental gradients. The small, spatially discrete food webs inhabiting tank-bromeliads provide an excellent opportunity to analyse patterns of community diversity and food-web topology (connectance, linkage density, nestedness) in relation to key environmental variables (habitat size, detrital resource, incident radiation) and predators: prey ratios. We sampled 365 bromeliads in a wide range of understorey environments in French Guiana and used gut contents of invertebrates to draw the corresponding 365 connectance webs. At the bromeliad scale, habitat size (water volume) determined the number of species that constitute food-web nodes, the proportion of predators, and food-web topology. The number of species as well as the proportion of predators within bromeliads declined from open to forested habitats, where the volume of water collected by bromeliads was generally lower because of rainfall interception by the canopy. A core group of microorganisms and generalist detritivores remained relatively constant across environments. This suggests that (i) a highly-connected core ensures food-web stability and key ecosystem functions across environments, and (ii) larger deviations in food-web structures can be expected following disturbance if detritivores share traits that determine responses to environmental changes. While linkage density and nestedness were lower in bromeliads in the forest than in open areas, experiments are needed to confirm a trend for lower food-web stability in the understorey of primary forests

    Environmental determinants of macroinvertebrate diversity in small water bodies: insights from tank-bromeliads

    Get PDF
    The interlocking leaves of tank-forming bromeliads (Bromeliaceae) collect rainwater and detritus, thus creating a freshwater habitat for specialized organisms. Their abundance and the possibility of quantifying communities with accuracy give us unparalleled insight into how changes in local to regional environments influence community diversity in small water bodies. We sampled 365 bromeliads (365 invertebrate communities) along a southeastern to northwestern range in French Guiana. Geographic locality determined the species pool for bromeliad invertebrates, and local environments determined the abundance patterns through the selection of traits that are best adapted to the bromeliad habitats. Patterns in community structure mostly emerged from patterns of predator species occurrence and abundance across local-regional environments, while the set of detritivores remained constant. Water volume had a strong positive correlation with invertebrate diversity, making it a biologically relevant measure of the pools' carrying capacity. The significant effects of incoming detritus and incident light show that changes in local environments (e.g., the conversion of forest to cropping systems) strongly influence freshwater communities. Because changes in local environments do not affect detritivores and predators equally, one may expect functional shifts as sets of invertebrates with particular traits are replaced or complemented by other sets with different traits

    Dispatch from the field: ecology of ground-web-building spiders with description of a new species (Araneae, Symphytognathidae).

    Get PDF
    Crassignathadanaugirangensis sp. n. (Araneae: Symphytognathidae) was discovered during a tropical ecology field course held at the Danau Girang Field Centre in Sabah, Malaysia. A taxonomic description and accompanying ecological study were completed as course activities. To assess the ecology of this species, which belongs to the ground-web-building spider community, three habitat types were surveyed: riparian forest, recently inundated riverine forest, and oil palm plantation. Crassignathadanaugirangensis sp. n. is the most abundant ground-web-building spider species in riparian forest; it is rare or absent from the recently inundated forest and was not found in a nearby oil palm plantation. The availability of this taxonomic description may help facilitate the accumulation of data about this species and the role of inundated riverine forest in shaping invertebrate communities

    Global Patterns of Guild Composition and Functional Diversity of Spiders

    Get PDF
    The objectives of this work are: (1) to define spider guilds for all extant families worldwide; (2) test if guilds defined at family level are good surrogates of species guilds; (3) compare the taxonomic and guild composition of spider assemblages from different parts of the world; (4) compare the taxonomic and functional diversity of spider assemblages and; (5) relate functional diversity with habitat structure. Data on foraging strategy, prey range, vertical stratification and circadian activity was collected for 108 families. Spider guilds were defined by hierarchical clustering. We searched for inconsistencies between family guild placement and the known guild of each species. Richness and abundance per guild before and after correcting guild placement were compared, as were the proportions of each guild and family between all possible pairs of sites. Functional diversity per site was calculated based on hierarchical clustering. Eight guilds were discriminated: (1) sensing, (2) sheet, (3) space, and (4) orb web weavers; (5) specialists; (6) ambush, (7) ground, and (8) other hunters. Sixteen percent of the species richness corresponding to 11% of all captured individuals was incorrectly attributed to a guild by family surrogacy; however, the correlation of uncorrected vs. corrected guilds was invariably high. The correlation of guild richness or abundances was generally higher than the correlation of family richness or abundances. Functional diversity was not always higher in the tropics than in temperate regions. Families may potentially serve as ecological surrogates for species. Different families may present similar roles in the ecosystems, with replacement of some taxa by other within the same guild. Spiders in tropical regions seem to have higher redundancy of functional roles and/or finer resource partitioning than in temperate regions. Although species and family diversity were higher in the tropics, functional diversity seems to be also influenced by altitude and habitat structure

    Species niches, not traits, determine abundance and occupancy patterns: A multi‐site synthesis

    Get PDF
    International audienceAim: Locally abundant species are usually widespread, and this pattern has been related to properties of the niches and traits of species. However, such explanations fail to account for the potential of traits to determine species niches and often overlook statistical artefacts. Here, we examine how trait distinctiveness determines the abilities of species to exploit either common habitats (niche position) or a range of habitats (niche breadth) and how niche position and breadth, in turn, affect abundance and occupancy. We also examine how statistical artefacts moderate these relationships. Location: Sixteen sites in the Neotropics. Time period 1993–2014. Major taxa studied Aquatic invertebrates from tank bromeliads. Methods: We measured the environmental niche position and breadth of each species and calculated its trait distinctiveness as the average trait difference from all other species at each site. Then, we used a combination of structural equation models and a meta-analytical approach to test trait–niche relationships and a null model to control for statistical artefacts. Results: The trait distinctiveness of each species was unrelated to its niche properties, abundance and occupancy. In contrast, niche position was the main predictor of abundance and occupancy; species that used the most common environmental conditions found across bromeliads were locally abundant and widespread. Contributions of niche breadth to such patterns were attributable to statistical artefacts, indicating that effects of niche breadth might have been overestimated in previous studies. Main conclusions: Our study reveals the generality of niche position in explaining one of the most common ecological patterns. The robustness of this result is underscored by the geographical extent of our study and our control of statistical artefacts. We call for a similar examination across other systems, which is an essential task to understand the drivers of commonness across the tree of life

    Constraints on the functional trait space of aquatic invertebrates in bromeliads

    Get PDF
    This is the peer reviewed version of the following article: CĂ©rĂ©ghino R, Pillar VD, Srivastava DS, et al. Constraints on the functional trait space of aquatic invertebrates in bromeliads. Funct Ecol. 2018;00:1–13. https://doi.org/10.1111/1365-2435.13141, which has been published in final form at https://doi.org/10.1111/1365-2435.13141 This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.CESAB‐FRB Labex CEBA. Grant Number: ANR‐10‐LABX‐25‐01 BPE‐FAPESP. Grant Number: 2016/01209‐9 CNPq‐Brazil. Grant Numbers: 307689/2014‐0, 401345/2014‐9 Royal Society of Edinburgh Carnegie Trust for the Universities of Scotland US NSF. Grant Numbers: DEB‐0218039, DEB‐0620910 USDA IITF. Grant Number: 01‐1G11120101‐001 Saba Conservation Foundation PNPD‐CAPES. Grant Numbers: 2014/04603‐4, 2013087

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & NemĂ©sio 2007; Donegan 2008, 2009; NemĂ©sio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016
    • 

    corecore